Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region

Identifieur interne : 000002 ( PascalFrancis/Corpus ); précédent : 000001; suivant : 000003

Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region

Auteurs : XUEWEI HOU ; BIN ZHU ; HANQING KANG ; JINHUI GAO

Source :

RBID : Pascal:14-0262769

Descripteurs français

English descriptors

Abstract

The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the north-western Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 94
A08 01  1  ENG  @1 Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region
A11 01  1    @1 XUEWEI HOU
A11 02  1    @1 BIN ZHU
A11 03  1    @1 HANQING KANG
A11 04  1    @1 JINHUI GAO
A14 01      @1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology @2 Nanjing 210044 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology @2 Nanjing 210044 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 734-741
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000150337810780
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 14-0262769
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the north-western Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.
C02 01  X    @0 001D16C02
C03 01  X  FRE  @0 Ozone @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Ozone @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Ozono @2 NK @2 FX @5 01
C03 02  X  FRE  @0 Couche limite atmosphérique @5 02
C03 02  X  ENG  @0 Atmospheric boundary layer @5 02
C03 02  X  SPA  @0 Capa límite atmosférico @5 02
C03 03  X  FRE  @0 Variation saisonnière @5 03
C03 03  X  ENG  @0 Seasonal variation @5 03
C03 03  X  SPA  @0 Variación estacional @5 03
C03 04  X  FRE  @0 Bilan matière @5 04
C03 04  X  ENG  @0 Material balance @5 04
C03 04  X  SPA  @0 Balance materia @5 04
C03 05  X  FRE  @0 Gradient latitudinal @5 05
C03 05  X  ENG  @0 Latitudinal gradient @5 05
C03 05  X  SPA  @0 Gradiente latitudinal @5 05
C03 06  X  FRE  @0 Variation spatiale @5 06
C03 06  X  ENG  @0 Spatial variation @5 06
C03 06  X  SPA  @0 Variación espacial @5 06
C03 07  X  FRE  @0 Pollution air @5 07
C03 07  X  ENG  @0 Air pollution @5 07
C03 07  X  SPA  @0 Contaminación aire @5 07
C03 08  X  FRE  @0 Source pollution @5 08
C03 08  X  ENG  @0 Pollution source @5 08
C03 08  X  SPA  @0 Fuente polución @5 08
C03 09  X  FRE  @0 Asie @2 NG @5 31
C03 09  X  ENG  @0 Asia @2 NG @5 31
C03 09  X  SPA  @0 Asia @2 NG @5 31
C03 10  X  FRE  @0 Océan Pacifique @2 NG @5 32
C03 10  X  ENG  @0 Pacific Ocean @2 NG @5 32
C03 10  X  SPA  @0 Océano Pacífico @2 NG @5 32
C03 11  3  FRE  @0 Oxydant photochimique @5 35
C03 11  3  ENG  @0 Photochemical oxidants @5 35
N21       @1 328

Format Inist (serveur)

NO : PASCAL 14-0262769 INIST
ET : Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region
AU : XUEWEI HOU; BIN ZHU; HANQING KANG; JINHUI GAO
AF : Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology/Nanjing 210044/Chine (1 aut., 2 aut., 3 aut., 4 aut.); Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology/Nanjing 210044/Chine (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2014; Vol. 94; Pp. 734-741; Bibl. 1 p.
LA : Anglais
EA : The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the north-western Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.
CC : 001D16C02
FD : Ozone; Couche limite atmosphérique; Variation saisonnière; Bilan matière; Gradient latitudinal; Variation spatiale; Pollution air; Source pollution; Asie; Océan Pacifique; Oxydant photochimique
ED : Ozone; Atmospheric boundary layer; Seasonal variation; Material balance; Latitudinal gradient; Spatial variation; Air pollution; Pollution source; Asia; Pacific Ocean; Photochemical oxidants
SD : Ozono; Capa límite atmosférico; Variación estacional; Balance materia; Gradiente latitudinal; Variación espacial; Contaminación aire; Fuente polución; Asia; Océano Pacífico
LO : INIST-8940B.354000150337810780
ID : 14-0262769

Links to Exploration step

Pascal:14-0262769

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region</title>
<author>
<name sortKey="Xuewei Hou" sort="Xuewei Hou" uniqKey="Xuewei Hou" last="Xuewei Hou">XUEWEI HOU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bin Zhu" sort="Bin Zhu" uniqKey="Bin Zhu" last="Bin Zhu">BIN ZHU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hanqing Kang" sort="Hanqing Kang" uniqKey="Hanqing Kang" last="Hanqing Kang">HANQING KANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jinhui Gao" sort="Jinhui Gao" uniqKey="Jinhui Gao" last="Jinhui Gao">JINHUI GAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0262769</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0262769 INIST</idno>
<idno type="RBID">Pascal:14-0262769</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000002</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region</title>
<author>
<name sortKey="Xuewei Hou" sort="Xuewei Hou" uniqKey="Xuewei Hou" last="Xuewei Hou">XUEWEI HOU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bin Zhu" sort="Bin Zhu" uniqKey="Bin Zhu" last="Bin Zhu">BIN ZHU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hanqing Kang" sort="Hanqing Kang" uniqKey="Hanqing Kang" last="Hanqing Kang">HANQING KANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jinhui Gao" sort="Jinhui Gao" uniqKey="Jinhui Gao" last="Jinhui Gao">JINHUI GAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Asia</term>
<term>Atmospheric boundary layer</term>
<term>Latitudinal gradient</term>
<term>Material balance</term>
<term>Ozone</term>
<term>Pacific Ocean</term>
<term>Photochemical oxidants</term>
<term>Pollution source</term>
<term>Seasonal variation</term>
<term>Spatial variation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ozone</term>
<term>Couche limite atmosphérique</term>
<term>Variation saisonnière</term>
<term>Bilan matière</term>
<term>Gradient latitudinal</term>
<term>Variation spatiale</term>
<term>Pollution air</term>
<term>Source pollution</term>
<term>Asie</term>
<term>Océan Pacifique</term>
<term>Oxydant photochimique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ozone (O
<sub>3</sub>
) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O
<sub>3</sub>
data agree well with observed values. O
<sub>3</sub>
budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O
<sub>3</sub>
differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the north-western Pacific Ocean, advective flux was found to drive the seasonal variation of O
<sub>3</sub>
concentrations. The large latitudinal gradient in O
<sub>3</sub>
with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O
<sub>3</sub>
was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O
<sub>3</sub>
export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XUEWEI HOU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BIN ZHU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HANQING KANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JINHUI GAO</s1>
</fA11>
<fA14 i1="01">
<s1>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology</s1>
<s2>Nanjing 210044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>734-741</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000150337810780</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0262769</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The ozone (O
<sub>3</sub>
) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O
<sub>3</sub>
data agree well with observed values. O
<sub>3</sub>
budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O
<sub>3</sub>
differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the north-western Pacific Ocean, advective flux was found to drive the seasonal variation of O
<sub>3</sub>
concentrations. The large latitudinal gradient in O
<sub>3</sub>
with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O
<sub>3</sub>
was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O
<sub>3</sub>
export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Couche limite atmosphérique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Atmospheric boundary layer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capa límite atmosférico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Variation saisonnière</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Seasonal variation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Variación estacional</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Bilan matière</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Material balance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Balance materia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Gradient latitudinal</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Latitudinal gradient</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Gradiente latitudinal</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Variation spatiale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Spatial variation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Variación espacial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Source pollution</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Pollution source</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fuente polución</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Océan Pacifique</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Pacific Ocean</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Océano Pacífico</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Oxydant photochimique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Photochemical oxidants</s0>
<s5>35</s5>
</fC03>
<fN21>
<s1>328</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 14-0262769 INIST</NO>
<ET>Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region</ET>
<AU>XUEWEI HOU; BIN ZHU; HANQING KANG; JINHUI GAO</AU>
<AF>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology/Nanjing 210044/Chine (1 aut., 2 aut., 3 aut., 4 aut.); Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology/Nanjing 210044/Chine (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2014; Vol. 94; Pp. 734-741; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>The ozone (O
<sub>3</sub>
) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O
<sub>3</sub>
data agree well with observed values. O
<sub>3</sub>
budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O
<sub>3</sub>
differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the north-western Pacific Ocean, advective flux was found to drive the seasonal variation of O
<sub>3</sub>
concentrations. The large latitudinal gradient in O
<sub>3</sub>
with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O
<sub>3</sub>
was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O
<sub>3</sub>
export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.</EA>
<CC>001D16C02</CC>
<FD>Ozone; Couche limite atmosphérique; Variation saisonnière; Bilan matière; Gradient latitudinal; Variation spatiale; Pollution air; Source pollution; Asie; Océan Pacifique; Oxydant photochimique</FD>
<ED>Ozone; Atmospheric boundary layer; Seasonal variation; Material balance; Latitudinal gradient; Spatial variation; Air pollution; Pollution source; Asia; Pacific Ocean; Photochemical oxidants</ED>
<SD>Ozono; Capa límite atmosférico; Variación estacional; Balance materia; Gradiente latitudinal; Variación espacial; Contaminación aire; Fuente polución; Asia; Océano Pacífico</SD>
<LO>INIST-8940B.354000150337810780</LO>
<ID>14-0262769</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0262769
   |texte=   Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023